2. Temporal Analysis Framework
LSTM Implementation Architecture
Neural Network Configuration
LSTM_CONFIG = {
'hidden_layers': 3,
'hidden_size': 128,
'dropout': 0.2,
'sequence_length': 24, # hours
'feature_count': 15,
'batch_size': 32,
'learning_rate': 0.001
}Volatility Prediction Mechanisms
class VolatilityPredictor:
def __init__(
self,
sequence_length: int = 100,
prediction_window: int = 24,
confidence_threshold: float = 0.7
):
self.model = LSTMModel(
input_size=15,
hidden_size=64,
num_layers=2,
output_size=1
)
self.pattern_windows = defaultdict(
lambda: deque(maxlen=1000)
)Feature Engineering Pipeline
Flash Crash Detection Algorithms
Detection Parameters
Performance Metrics
Monitoring Integration
Training Pipeline
Model Versioning
Last updated
