4. Whale Detection System
Accumulation Pattern Recognition
Detection Parameters
WHALE_THRESHOLDS = {
'min_whale_size_usd': 50000,
'analysis_window': 24 * 60 * 60, # 24 hours
'update_interval': 60, # seconds
'confidence_threshold': 0.75
}Pattern Recognition Implementation
class WhalePatternRecognizer:
def __init__(
self,
rpc_client: AsyncClient,
min_whale_size_usd: float = 50000,
analysis_window: int = 24 * 60 * 60,
update_interval: int = 60,
confidence_threshold: float = 0.75
):
self.thresholds = {
'stealth_accumulation': {
'min_transactions': 5,
'max_size_ratio': 0.1,
'time_window': 3600
},
'distribution': {
'min_transactions': 10,
'min_unique_receivers': 5,
'time_window': 7200
},
'wash_trading': {
'min_cycle_length': 3,
'max_time_between': 300,
'min_volume': 1000
}
}Distribution Phase Analysis
Analysis Metrics
Stealth Movement Detection
Performance Optimization
Resource Management
Caching Strategy
System Monitoring
Error Handling
Last updated
